Scattered data interpolation subject to piecewise quadratic range restrictions
نویسندگان
چکیده
منابع مشابه
Range restricted positivity-preserving scattered data interpolation
The construction of a range restricted bivariate C ( or G ) interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising cubic Bézier triangular patches are always positive and satisfy C ...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملRange Restricted Positivity-Preserving G Scattered Data Interpolation
Abstract : The construction of a range restricted bivariate G interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising quartic Bézier triangular patches are always positive and satisf...
متن کاملFitting smooth surfaces to scattered 3D data using piecewise quadratic approximation
The approximation of surfaces to scattered data is an important problem encountered in a variety of scientific applications, such as reverse engineering, computer vision, computer graphics, and terrain modeling. This paper describes an automatic method for constructing smooth surfaces defined as a network of curved triangular patches. The method starts with a coarse mesh approximating the surfa...
متن کاملInterpolation of Surfaces over Scattered Data
We investigate the performance of DEI, an approach [2] that computes off-mesh approximations of PDE solutions, and can also be used as a technique for scattered data interpolation and surface representation. For the general case of unstructured meshes, we found it necessary to modify the original DEI. The resulting method, ADEI, adjusts the parameter of the interpolant, obtaining better perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/0377-0427(96)00044-1